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Abstract. The details of vulnerabilities are always kept confidential
until fixed, which is an efficient way to avoid the exploitations and
attacks. However, the Security Related Commits (SRCs), used to fix the
vulnerabilities in open source software, usually lack proper protections.
Most SRCs are released in code repositories such as Git, Github, Source-
forge, etc. earlier than the corresponding vulnerabilities published. These
commits often previously disclose the vital information which can be used
by the attackers to locate and exploit the vulnerable code. Therefore, we
defined the pre-leaked SRC as the Pre-Patch problem and studied its
hidden threats to the open source software. In this paper, we presented
an Automatic Security Related Commits Detector (ASRCD) to rapidly
identify the Pre-Patch problems from the numerous commits in code
repositories by learning the features of SRCs. We implemented ASRCD
and evaluated it with 78,218 real-world commits collected from Linux
Kernel, OpenSSL, phpMyadmin and Mantisbt released between 2016 to
2017, which contain 227 confirmed SRCs. ASRCD successfully identi-
fied 206 SRCs from the 4 projects, including 140 known SRCs (recall
rate: 61.7% on average) and 66 new high-suspicious. In addition, 5 of the
SRCs have been published after our prediction. The results show that:
(1) the Pre-Patch is really a hidden threat to open source software; and
(2) the proposed ASRCD is effective in identifying such SRCs. Finally,
we recommended the identified SRCs should be fixed as soon as possible.

Keywords: Pre-Patch · Open source software · Code repository
Vulnerability

1 Introduction

Disclosing vulnerability information before fixing is dangerous since the infor-
mation is the key factor for the attackers to locate and exploit the vulnerable
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code [11,13]. Therefore, the vulnerability disclosure policy requires the vulner-
ability information be remained inaccessible to public before the vulnerability
is fixed [24,25]. In particular, CVE and CVE-compatible security vulnerability
databases will merely release a reserved CVE number without publishing the
details (description, affected products and versions, references, etc.) until it is
repaired. Some vendors, like Mozilla, also make effort on keeping secret. For
example, CVE-2014-1557 is a vulnerability of Firefox with high severity (CVSS
v2 Base Score: 9.3) published on Jul 23, 2014, which may cause remote attack.
The details of the vulnerability had not been published until the flaw was fixed.
Additionally, the mail-list in bugzilla [1] remains access limited until to May 1,
2016.

However, the premature disclosure of vulnerabilities’ information is still possi-
ble and even inevitable in real world. We found a flaw in the current vulnerability
report and disclosure process: the code changes for repairing the vulnerability,
called Security Related Commits (SRCs), are often committed to code repos-
itories such as Github and Sourceforge, released to the public even when the
details of the vulnerability are unpublished by the vulnerability databases or
vendors. Unfortunately, the publication of SRCs may potentially expose some
vital information to the attackers for finding the error cause, locating the vulner-
able code and further exploiting. This makes the effort of vendors and security
vulnerability databases for protecting the information of vulnerabilities useless.
Again, taking CVE-2014-1557 as an example, its SRC 188980-0f2821706cdb was
available in code repository [8] on Jun 17, 2014, which is 37 days before the CVE
release. Furthermore, its SRC exposed the key information about the vulnera-
bility including the precise location of the vulnerable code, the details of source
code and a brief introduction of the error. This flaw introduces hidden threats
to open source softwares and we define it as the Pre-Patch problem.

To study the hidden threat of the Pre-Patch problem, we analyze the com-
mits of 4 popular OSS, which are Linux Kernel, OpenSSL, phpMyadmin and
Mantisbt, and found that most of the SRCs are released prematurely in the
code repositories. This may leak vital information of vulnerable codes before
fixing. We further design and implement ASRCD based on a machine learning
model to substantiate the possibility of rapidly identifying SRCs in large-scale
commits. Specifically, because the SRCs have some specific description exposed
in their comments, we use Text Mining method to analyze the existing commits
of the 4 OSS, and extract 7,465 features from comment data. Then we trained a
Back Propagation Artificial Neural Network (BP-ANN) classifier to identify the
suspected SRCs in code repositories, and predict the unpublished vulnerabilities
whose SRCs have been released in advance. We evaluated ASRCD with 78,218
real-world commits collected from the 4 OSS released between 2016 to 2017, con-
taining 227 confirmed SRCs. ASRCD successfully identified 206 SRCs including
140 known SRCs and 66 new high-suspicious, where 5 of the new SRCs have
been published after our prediction. The results show that: (1) the Pre-Patch is
really a hidden threat to open source software; and (2) the proposed ASRCD is
effective in identifying such SRCs.
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2 Problem

2.1 Pre-Patch Problem

The processes of current vulnerability publishing and SRC releasing are shown
in Fig. 1, and we analyze it in detail as follows.

Fig. 1. The publishing process. 1© is the SRC release process, 2© is the vulnerability
publishing process.

Vulnerability Publishing Process. As show in Fig. 1, once a devel-
oper/researcher finds a suspicious vulnerability, they notice the CVE Number-
ing Authorities (or CNA) including the MITRE corporation and some software
vendors as soon as possible [2]. Then, the venders and researchers verify the vul-
nerability according to the description or Proof of Concept (PoC) provided by
the notifier. The verified vulnerability will be fixed according to the fixing policy
to provide the best security posture to customers. Usually the more severity the
vulnerability is, the higher priority it has. Thirdly, the patch for repairing the
vulnerability will be tested to ensure the reliability and released according to the
patch releasing policy. Finally, the details of the vulnerability will be published
to warn the public and offer the solutions. SRC Release Process. In the real
world, the OSS are maintained in the code repositories. When a vulnerability
is discovered and verified, the developer/researcher often submits a SRC to the
code repositories to improve the software. According to the vulnerability dis-
closure policy [2], the disclosures are delayed to give the effected organizations
enough time to test, develop and deploy the patch. However, the SRC release
process is independent of the policy, leaving a time gap between the vulnerabil-
ity publishing and SRC release. Unfortunately, the prematurely released SRCs
might disclose information about vulnerabilities, such as the directory of the
vulnerable file, affected versions, code change, etc., which can be exploited by
attackers to locate flaws, analyze the vulnerable code and develop exploits.
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2.2 Data Collection

We collected 720,783 commits from 4 popular OSS code repositories [5,7] includ-
ing Linux Kernel, MantisBT, phpMyAdmin and OpenSSL and picked out 1,079
known SRCs. To build a map from SRCs to vulnerabilities, we search the vulner-
abilities’ information of the 4 OSS from in vulnerability databases [2,9], identify
the urls linking to the pages of SRCs and map the vulnerabilities’ information
to the SRCs.

2.3 Pre-Patch Analysis

The Pre-Patch problem violates the vulnerability disclosure policy. Therefore,
we examine the attack windows and the safe disclosure date (the date when the
vulnerabilities disclosed by CVE). Table 1 shows the delay of publishing vul-
nerabilities in the 4 OSS. The column Count indicates the number of collected
vulnerabilities, Delay% indicates the percentages of vulnerabilities that are pub-
lished later than their SRCs, and Delay on avg. indicates the average delay of
the vulnerabilities in each OSS. The result shows that all of the 4 OSS suffer
from the Pre-Patch problem, and the majority of vulnerabilities are published
later than the corresponding SRCs. The average delay of them (Linux Kernel:
137 days, phpMyAdmin: 42 days, OpenSSL: 29 days, MantisBT: 102 days) are
long enough for an attacker to exploit.

Table 1. The delays of publishing vulnerabilities.

OSS Count Delay % Delay on avg.

Linux Kernel 889 97.6% 137 days

phpMyAdmin 89 97.8% 42 days

MantisBT 41 100% 102 days

OpenSSL 60 76.7% 29 days

From Fig. 2, some vulnerabilities are published in relatively short time
(1 month) after the SRCs are released. However, the delay of more than 10%
of the vulnerabilities is much more than 1 month and worth improving. Partic-
ularly, more than 50% of the Linux Kernel SRCs are prematurely released for
more than one month. In addition, the delay of Linux Kernel is much slower
than the other 3 OSS. It probably because of the difficulty of ensuring all Linux
Kernel based softwares have their bug fixed.

The details of the Pre-Patch problem in the 4 OSS are shown in Fig. 3.
Take Linux kernel as an example shown in Fig. 3(a), only 21 vulnerabilities are
published in 24 h after the corresponding SRCs released. 373 vulnerabilities are
published in 1 month after their SRCs. However, the remaining 516 vulnerabil-
ities leave more than 1 month for attackers to find the SRCs, generate exploits
and attack unaware users. Furthermore, 90 SRCs were released ahead of the
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Fig. 2. The statistic of the delay.

(a) Detail of delay in Linux kernel. (b) Detail of delay in phpMyAdmin.

(c) Detail of delay in OpenSSL. (d) Detail of delay in MantisBT.

Fig. 3. The details of the Pre-Patch problem of the 4 OSS.

corresponding vulnerabilities 6 months to 1 year earlier. To make matters worse,
122 vulnerabilities even have a delay of more than 1 year that leave extremely
long attack windows. The attack window gives attackers a significant opportu-
nity to attack. The vulnerability release delay in the other 3 OSS (phpMyAdmin,
OpenSSL, MantisBT) are shown in Fig. 3(b), (c) and (d) respectively. Accord-
ing to the figures, the majority of vulnerabilities are published 1 quarter after
the SRCs release. Comparing with the other 3 OSS, OpenSSL shows a relatively
faster vulnerability disclosure, yet it still has 8 vulnerabilities which have a delay
of more than 1 month up to half of a year.

3 Text Mining

When submitting a SRC, the author usually offers some description as the
comments to explain the details of the vulnerability. This can help other



Pre-Patch: Find Hidden Threats in Open Software 53

researchers/developers verify and analyze the problem. We believe that SRCs
probably contain some special security-related words and phrases in their com-
ments. However, such words and phrases unintentional help attackers locate the
SRCs in countless commits. Therefore, we use Text Mining method to extract
the features of SRCs and build a machine learning-based system to automatically
identify SRCs from large-scale commits.

We present a Text Mining method to extract the security related features, and
classify the documents into a fixed number of predefined categories [15,16,26].
We propose to use the method to extract the security-related keyword and com-
bine the Back Propagation Artificial Neural Network to classify the description
that introduce the SRCs. Our algorithm consists of four steps including word
segmentation, word set expansion and feature extraction.

In this section, we leverage 648,149 commits released before Jan 1, 2016 from
the code repositories for Linux Kernel [7], OpenSSL [6], phpMyadmin [4] and
Mantisbt [3]. We separate the commits into two datasets which are the SRC
Dataset (SRCD) and the Other Commits Dataset (OCD). The SRCD consists
of the SRCs of known vulnerabilities while the OCD contains the rest of the
commits. Generally, each commit has the author information of the commit,
committer information, commit id, date and time, title and description of the
commit, reviewer information, code changes, and other information. We focus on
the title and description and extract features by analyzing the datasets. Finally,
we introduce the features and discuss how to extract those features and how to
use the extracted features to identify the SRCs.

3.1 Word Segmentation

The first step is to partition the comments/description of each commit into single
words, and construct a word set for each of them, called word segmentation.
Then we optimize the result by deleting stop words (such as to, and, is, are)
and merging synonyms (such as info/information, leak/leaks, fix/fixes).

Taking SRC 7775142 as an example, it is the SRC of vulnerability CVE-
2015-8215, which is a Denial of Service (DoS) vulnerability caused by missing
value validation. The comment/description of it is separated into single words,
as shown in Table 2.

Comparing the comment/description with the result of word segmentation,
we find that the words like “exploit”, “remote”, “attacker”, “lead”, and “DoS”
in the SRC are used to describe the details of the vulnerability. Some of them are
especially applied to express a security related issue and appear in other SRCs.

3.2 Word Set Expansion

Some words are often used simultaneously for describing security related con-
tents. For example, “buffer overflow” is a kind of code flaw which may cause a
crash or privilege escalation, while “info leak” means a kind of bug that may
lead to privacy leakage.
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Table 2. Word segmentation result.

SRC 7775142

CVE CVE-2015-8215

Words Daemon, have, like, NetworkManager, running, exploit, remote,
attacker, forging, RA, packets, invalid, MTU, possibly, lead, DoS,
currently, only, validates, values, small

Comment If you have a daemon like NetworkManager running, this may be
exploited by remote attackers by forging RA packets with an invalid
MTU, possibly leading to a DoS. (NetworkManager currently only
validates for values too small, but not for too big ones.)

To find such word groups, we use the Apriori algorithm to expand the results
of word segmentation, called word set expansion. The Apriori algorithm is pre-
sented for frequent item set mining and association rule learning [10]. It is a data
mining algorithm which generates candidate item sets of length k from item sets
of length k−1 by pruning infrequent ones. Here, it combines the words according
to their support and confidence.

3.3 Feature Extraction

The core step of the Text Mining algorithm is distinguishing security related
keywords from the expanded word set. We use Mutual Information (MI) here
to calculate the difference between the proportion of a word appeared in SRCs
and in other commits, and then to find the words or phrases that are frequently
used to describe SRCs rather than other commits.

MI(tk, ci) = log
P (tk, ci)

P (tk)P (ci)
= log

P (tk|ci)
P (tk)

(1)

In Formula 1, tk means an item consisting of the expanded word set while ci
indicates a security related commit. The formula aims at calculating MI(tk, ci)
which is the mutual information entropy of tk according to the probability P . If
a word/phrase tk frequently appears in security related commits ci rather than
in the other commits, the entropy value MI(tk, ci) will be high. Therefore, we
treat the items in the expanded word set which have high entropy values as the
features of SRCs.

According to the Apriori algorithm, the word set expansion step extends the
word set by iteration. However, excessive iteration may cause overfitting and thus
reduce the quality of features. To find a proper number of iterations, we analyze
the coverage rate of the commits including the words/phrases which are contained
in the expanded word sets of different levels, as shown in Fig. 4(a) and (b).

Figure 4(a) shows the proportion of the SRCs, which include the items in the
expanded word sets of different levels, and Fig. 4(b) shows the proportion of the
other commits. In the figures, the x-axis indicates the MI entropy which varies
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(a) The coverage rate of SRCs. (b) The coverage rate of other commits.

Fig. 4. The coverage rate based on expanded word sets of different levels

from a fix number to “−∞” and the y-axis is the coverage of commits which
contain the items under the corresponding MI entropy. loopk corresponds to

⋃
k

Lk in Apriori with k ∈ {1, 2, 3}. loop1 indicates the expanded word set consisting
of single words. loop2 means the combination of the single words and the items
including two words, and loop3 includes all of the items whose lengths are no
more than 3. As we can see, with the increasing of the number of iterations k,
the difference between word sets loopk becomes smaller. The difference between
loop2 and loop3 is less than that of loop1 and loop2, both in the sets of SRCs
and other commits. Many times of iterations do not make too much difference,
so we set the number of iterations up to 3.

After choosing a proper number of iterations, we give a threshold of MI to
extract the features. Thus, we compare the coverage rate of SRCs with other
commits given different MI values.

4 Learning-Based Detection

4.1 Overview

Based on the Text Mining methods presented previously, we extract 7,465 key-
word features regarded as the features of SRCs. To make these features useful in
practice, we develop a learning-based system to automatically train the classifier
ASRCD with the features and further identify SRCs in the test set using the
trained classifier. The overview of ASRCD is shown in Fig. 5. ASRCD consists
of 5 main processes including Training Set (or Test Set), Pre-Handle Module,
Detection Module, Suspicious SRCs and Verification.

Figure 5(a) shows the training process. All commits in Training Set are
labeled as security-related commits while other commits pre-handled by a Pre
Handle Module before identification. The first step of Pre Handle Module is
Undersampling, used to mitigate the severe imbalance of current data set. Then,
according to the keywords features, the feature matrixes of each commit are
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(a) Overview of training process. (b) Overview of detection process.

Fig. 5. Overview of ASRCD.

established and entered into the Detection Module. After that, a set of Suspi-
cious SRCs are generated and verified according to the label of each commit, all
results are feedback to Detection Module to adjust the weight of each feature.

Figure 5(b) shows the process of detection in ASRCD. Separating from train-
ing process, the input turn to unlabeled commits and Under-sampling Handle
is excluded. All commits in the Test Set are pre-handled by Pre Handle Module
to generate feature matrixes of each commit which are then entered into the
Detection Module. All the results output from Detection Module are ranked.
The results with high ranks are treated as suspicious SRCs. For verification,
we manually inspect the results by reviewing them, contacting the authors and
tracing the vulnerability information by searching the CVE database. Finally,
we label the confirmed SRCs and feedback to the classifier.

4.2 Feature Construction

Data Collection. In this work, we collected 784,959 commits that are released
before Jan 1, 2017 from the repositories of Linux Kernel, OpenSSL, phpMyadmin
and Mantisbt. Additionally, all merge commits in each OSS are excluded since
they are often the duplication of the SRCs. Therefore, the whole size of commits
is 648,149. The details of the collected data set are demonstrated in Table 3.

Table 3. Detail of collected data set.

OSS C(n − m) SRCD OCD Prop.

OpenSSL 18,600 80 18,520 0.43%

phpMyadmin 96,827 153 96,674 0.15%

Linux Kernel 601,317 1,021 600,296 0.17%

Mantisbt 9,632 41 9,591 0.43%

In Table 3, OSS means the four open source software, C(n−m) indicates the
number of commits without merge commits in each repository, SRCD and OCD
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respectively represents the size of SRCs and other commits in the corresponding
OSS. Prop. means the proportion of SRCD and OCD in each OSS. For instance,
Linux Kernel have 601,317 commits in whole data set, 1,021 of them are SRCs
while 600,296 of them are other commits. The number of SRCs is only 0.15% of
the number of other commits which means that the data set of Linux Kernel is
quite imbalance. Therefore, we pose Under-sampling Handle process to eliminate
the imbalance in advance to prevent the training process from inaccuracy.

Undersampling Handle. From Table 3, severe imbalance exists in data sets of
the four OSS, which probably encumber the accuracy of training process. For this
reason, we design a Under-sampling Handle step in Pre-Handle Module to deal
with this problem. Especially, for each OSS, we randomly pick several groups of
other commits from OCD and ensure that the size of each group is equal to two
times of the number of SRCs in the same OSS. ASRCD will be trained several
times with different group of other commits and same SRCs until the result turn
to stable.

Feature Matrix Generation. For training or detection, we generate a fea-
ture matrix for each commit, which will be input into the Detection Module. To
generate the feature matrix, we establish several feature vectors for each com-
mit in advance. The feature vector generation is used to establish the relation
between the features and commits, based on which the classifier can identify the
SRCs. This process can be expressed as φ(X) : x → g(x), x ∈ X. X indicates
the candidate commit set and φ(X) indicates the feature matrix generation for
the candidate commit set X. x means each commit included in X. The feature
vector generation for commit x is indicated by g(x), which is presented below,

g(x) =
{

1 if C(x) ∪ Foss(MI) �= ∅

0 other
(2)

where x indicates a commit. oss represents the OSS that includes the commit
x. MI stands for the threshold of MI. Foss(MI) indicates the keyword features
under the threshold MI in the OSS oss. We abstract the process of finding
features in the commit x as C(x). Especially, C(x) is defined as all of the words
included in the commit x. If C(x) ∪ Foss(MI) �= ∅, which means the features
Foss(MI) exist in the commit x, g(x) will return 1; otherwise return 0.

Combing every feature vector of a candidate commit x, the feature matrix
of it is established. For a better understanding, we take the commit 7775142 as
an example, the feature matrix of the commit looks as follows.

ϕ(x) →

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
1
1
0
1
0
...

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

vulnerability
lead DoS

remote attacker
security
exploit

use after free
...

(3)
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The relation between a commit and all the features are demonstrated by a
matrix consists of 0 and 1. As previously mentioned, the Word Segmentation
step separates the comment of commit 7775142 into several words and phrases.
Some keyword features such as “exploit”, “remote attacker” and “lead DoS” are
included in the word set. Therefore, the features lead DoS, remote attacker and
exploit appearing in the commit are reflected by non-zero dimensions while the
unrelated features are labeled as zero dimensions. ASRCD will identify the SRCs
in the commits according to the matrix.

4.3 Classification with BP-ANN

Finally, the feature matrix of each commit in the candidate commit set is deliv-
ered to the classifier in the detection module for identification. Before identifica-
tion, the classifier should be trained with plenty of commits, which are labeled
as the SRC or the other commit. However, in our case, the label of a commit
can be changed - some commits with a label of the other commit is converted to
a SRC over time. Changeable commit introduce the noise, which could influence
the training performance. Thus, it is necessary to choose a proper algorithm
which can be trained with unlabeled samples. For this reason, the module uses
a BP − ANN as the final algorithm for integration. BP − ANN is a kind of
artificial neural network algorithm using back propagation of errors to resist
deviation and refine the identification result. Since it can adjust the references
of “neurons” dynamically, the algorithm performs well when classifying a sample
set that contains noise.

Another question of this step is the imbalance of the data set. The module
trains BP − ANN with the data in OCD and in SRCD whose size is hundreds
times larger than OCD.

We implement the BP −ANN algorithm with PyBrain [23] which is an open-
source tool integrating most neural network algorithms. The input of BP −ANN
for testing is the candidate commit set and the output is a commit with a score
ranged from 0 to 1. If the score is close to 1, it indicates that this commit is
more likely to be a SRC. Finally, all detection results are ranked by the scores.

5 Evaluation

The Pre-Patch problem violates the mature vulnerability disclosure policy,
exposes exploitable information of vulnerable code before the safe publish date,
leads to a potential threaten. However, rapidly finding SRCs in large-scale com-
mits seems extremely difficult. In this section, we will break this intuition with
ASRCD, evaluate the effectiveness of our approach using several different ways.
First, we evaluate the effectiveness of ASRCD in a real-world scenario. We origi-
nally constructed training set with SRCs and several groups of other commits in
each OSS as described in Sect. 4. We use this dataset for training our Detection
Module. Our goal is to find SRCs in large-scale commits. We constructed the
test set with all commits released between Jan 1, 2016 and Dec 31, 2016.
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Table 4. Datasets constructed to evaluate ASRCD.

OpenSSL phpMyadmin

Training set Test set Training set Test set

SRC 51 29 SRC 84 69

Other 4,080 4,652 Other 18,816 2,662

Linux Kernel Mantisbt

Training set Test set Training set Test set

SRC 895 126 SRC 38 3

Other 107,400 70,061 Other 3,040 843

Table 4 shows the datasets we constructed to evaluate ASRCD. The table
consists of 4 parts that indicate the 4 OSS. For each part, rows begin with
SRC and Other indicates the amount of SRCs and other commits, respectively.
For instance, the training set of OpenSSL consists of 51 SRCs and 4,080 other
commits released before Jan 1, 2016 while the test set combines with 29 SRCs
and 4,652 other commits released from Jan 1, 2016 to Dec 31, 2016. Specially,
the other commits in training sets are randomly picked from the whole OCD of
each OSS and separated into several groups, just like in Sect. 4.

Using the feature extraction methods presented in Sect. 3, we extract 6,934
keyword features from Linux kernel, 365 from phpMyadmin, 114 from OpenSSL
and 52 from mantisbt. Then, ASRCD is trained with the training set to predict
SRCs in the test set based on the extracted features.

After training, ASRCD uses keyword features of each OSS to identify suspi-
cious SRCs in test set of them.

Fig. 6. Identification performance of ASRCD.

Figure 6 shows the precision-recall curves for the results of ASRCD. The
curves Mantisbt, OpenSSL, phpMyadmin and LinuxKernel indicate the
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relation between the precision rate and the recall rate of the identification results
for Mantisbt, OpenSSL, phpMyadmin and Linux Kernel, respectively. As can be
seen, ASRCD performs the best performance when detecting Mantisbt. The per-
formance of the detection for OpenSSL is better than phpMyadmin while the
one in Linux Kernel is relatively worse. The result shows that, with ASRCD’s
help, finding SRCs in Mantisbt is most convenient, identifying SRCs in OpenSSL
is more effective than in phpMyadmin and finding SRCs in Linux Kernel is rel-
atively harder than in the other 3 OSS.

Finally, ASRCD identifies 112 suspicious SRCs in OpenSSL, which include
28 known SRCs, 362 suspicious SRCs in phpMyadmin with 34 known SRCs in
it, 1,146 SRCs in Linux Kernel with 75 known SRCs and 10 suspicious SRCs in
Mantisbt with 3 known SRCs. The detail of result are presented as Table 5.

Table 5. Detection result of four OSS.

OSS Susp. SRC Recl. Exclude

OpenSSL 112 28 96.6% 97.6%

phpMyadmin 362 34 49.3% 86.4%

Linux Kernel 1,146 75 65.4% 98.4%

Mantisbt 10 3 100% 98.8%

From Table 5, Susp. means the number of suspicious SRCs in the OSS and
SRC represents the number of SRCs in Susp.. Recl. stands for the recall rate of
the result. As can be seen, ASRCD identifies all SRCs in the test set of Mantisbt
and find majority of SRCs in OpenSSL and Linux Kernel. The result for php-
Myadmin get the lowest Recl.. By analyzing the SRCs of phpMyadmin, we find
that the SRCs lack plenty comments. In addition, the main purpose of ASRCD
is helping rapidly identifying SRCs in large-scale commits. Therefore, the abil-
ity of effectively excluding other commits is important. From Table 5, Exclude
means the percentage of excluded commits, for instance, ASRCD outputs 112
suspicious SRCs in OpenSSL while excludes 4,540 commits that are regarded as
other commits, which is 97.6% of all the 4,652 commits in test set. The 97.6%
exclusion extremely reduces the time we cost for the further identification and
analysis. Furthermore, ASRCD ranks the suspicious SRCs according to their
probability scores output by BP − ANN .

Table 6 indicates the confusion matrix of the system by identifying SRCs in
OpenSSL based on the top results, and shows the relation of the precision and
recall of ASRCD. In the second row, we select the top 10 suspected results, then
50 in the third row, further 100 in the fourth row and finally 142 in the last
row. The above evaluation shows that the ranking is effective. The suspicious
results with a higher rank are more likely to be the real SRCs. Among the top 10
results ranked by ASRCD, 4 are SRCs, achieving a precision rate of 40%, which
means that the attacker can easily find prematurely released SRCs in high-rank
suspected commits. Although the precision rate decreases with the increase of
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Table 6. Confusion matrix of OpenSSL detection results order by ranks. T: True, F:
False, P: Positive, N: Negative.

TP FP FN TN Precision Recall

Top 10 4 6 25 4,617 0.4 0.14

Top 50 17 33 12 4,590 0.34 0.59

Top 100 27 73 2 4,550 0.27 0.93

Top 142 28 114 1 4,509 0.2 0.97

the recall rate, it still remains 20% when the recall rate approaches 97% in the
whole 143 results. This is still a manageable amount of suspected commits for
an attacker to review and analyze. More rank results are shown in Appendix.

The Pre-Patch problem violates the vulnerability disclosure policy, prema-
turely leaks the information of vulnerabilities and extends a potential attack
window. To measure the attack window, we calculate the disclosure delay of
vulnerabilities whose SRCs are identified, as shown in Fig. 7.

Fig. 7. Delay of identified SRCs.

From Fig. 7, all 140 identified SRCs have the Pre-Patch problem. In detail,
a large proportion of vulnerabilities of OpenSSL and phpMyadmin are open
to the public in one week, leaves a relatively short attack window. However,
there still have about half of SRCs that are prematurely released more than one
week before the disclosure of corresponding vulnerability. The average delays of
OpenSSL and phpMyadmin are 10.3 days and 14.4 days. The probably reason of
this situation is that the long delayed vulnerabilities are still unpublished and
are treated as suspicious SRCs (not in the 140 SRCs) and therefore fail to take
into account. By contrast, the speed of Linux Kernel vulnerability disclosure is
slower than the previous 2 OSS. For Linux Kernel, the average delay reaches
61.3 days. Majority of vulnerabilities are published more than one week after
the corresponding SRCs release. We do not discuss the result of Mantisbt here
since the result is rare.
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For all of the 4 OSS, 1.4% vulnerabilities are published by CVE less than one
day after SRC release, 22.9% are open to the public after 1 day and in one week.
67.1% are published between one week to one month and 88.6% are disclosed in
the period of one month to a quarter. The average delay is 39.5 days which leaves
a considerable attack window. Further more, the longest delay reaches 315 days,
which leaves a long attack window.

6 Discussion and Future Work

Evaluation Result. In the evaluation, some SRCs of unpublished vulnerabil-
ities fall into FP because of the fact that they are failed to labeled as SRCs.
Besides, a small part of links between SRCs and the corresponding vulnerabil-
ities are missed by CVE. Therefore, the unlinked SRCs are failed to labeled as
SRCs. For instance, according to the description, commit fcd91dd4 is a SRC to
fix the vulnerability CVE-2016-7039. However, the link of the commit is missed
in CVE information, which causes a incorrect label. The situations above lead
to an underestimated evaluation result of ASRCD, which means the real perfor-
mance is better than the conservative one shown in evaluation.

Limitations and Future Work. Unlike the attackers who are only concerned
with highly suspicious SRCs or those they are familiar with, we handle every
suspected result aiming at finding SRCs as many as possible. Thus, precisely
verifying every SRC by developing PoC is hard. Instead, in this work, we verify
the SRCs by tracing new published vulnerabilities on NVD and confirming with
authors of suspected SRCs. All confirmed SRCs are labeled and fed back to our
system. In addition, we plan to collaborate with more security experts to speed
up the process of SRC verification by analyzing the source code of suspicious
SRCs and the corresponding code flaws.

In this work, we focused on the OpenSSL, phpMyadmin, Linux Kernel and
Mantisbt, presented and extracted the features from its code repository to ana-
lyze the exploitability of the Pre-Patch problem and demonstrate the severity of
it. We did not discuss the compatibility of our approach for more OSS. In the
future, we will make further effort to apply the method to other OSS.

7 Related Work

The Security Threat of the Information of Vulnerability Leakage.
Brumley et al. presented that attackers are able to take advantage of released
patch to attack the vulnerable hosts who have not yet received the patch. They
further proposed a method of automatic exploit generation based on patch, and
showed the security threat of prematurely leaking information of vulnerabilities
to attackers [13]. After that, Avgerinos et al. improved the method of auto-
matic exploit generation and presented an end-to-end system for fully automatic
exploit generation [11]. Their approach has the ability of finding exploitable bugs
according to information of the vulnerability, such as source code, binary and
runtime information, which demonstrates the danger of this threat.
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Identifying the Potential Vulnerability by Data Mining. Meneely et al.
presented that the code that underwent a large number of revisions were more
likely to introduce vulnerabilities [20]. In addition, they discussed that code
churn and new developers play an important rule in introducing vulnerability-
contributing commits (VCCs) [18]. They also found that vulnerable code that
was checked by the reviewers who lack security experience and collaborators may
escape from the review process and be merged into code repositories [19]. To
characterize code changes that contain exploitable vulnerabilities in code repos-
itories, Bosu et al. discussed several characteristics about code churn and author
experience [12]. In addition, some previous work was presented to find poten-
tially VCCs in code repositories [21,22]. The previous work has made great effort
to characterize and discover VCCs which probably introduce vulnerable code.
However, identifying the vulnerabilities in VCCs is still a hard task, since VCCs
provide little information about the vulnerabilities. To overcome this obstacle,
our approach focuses on characterizing and identifying SRCs in code repositories
instead of finding VCCs, since the location and principle of vulnerable code can
be intuitively find according to SRCs. To the best of our knowledge, no previous
work has been presented to identify the SRCs in code repositories.

Detecting Vulnerabilities Leveraging SRCs. A number of researches took
advantage of SRCs to mine potential vulnerabilities in code repositories, such as
Jang et al.’s Redebug [14] and Luo et al.’s Patchgen [17]. Those work focused
on detecting unpatched vulnerabilities whose SRCs have been given. By con-
trast, the purpose of our research is to detect unaware SRCs in order to find
unpublished vulnerabilities.

8 Conclusions

In this paper, we presented a hidden security threat in OSS: the prematurely
released SRCs often leak much information of vulnerabilities which may help
attackers locate and exploit the vulnerable code, called the Pre-Patch problem.
In addition, we demonstrated the severity and universality of the Pre-Patch
problem by analyzing 720,783 commits from 4 popular code repositories. In
order to demonstrate the feasibility of the attack based on the Pre-Patch prob-
lem, we presented a machine learning-based framework, called ASRCD, to learn
the features of SRCs and identify SRCs in large scale code commits. ASRCD
firstly extracts several classes of features of SRCs according to data analysis and
statistics. Then, it trained a BP artificial neural network classifier to identify
SRCs. The evaluation result shows that ASRCD is effective in identifying SRCs
in code repository. Our findings have meaningful implications to researchers and
vendors in helping them understand the severity of the Pre-Patch problem in
OSS and improve the code review and vulnerability disclosure process.
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